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Abstract. Using the formula found by Noorbala and Sepehrinia, the wave 

deviation in an inhomogeneous medium with continuous variation of 

propagation velocity is deduced. For electromagnetic waves (light) that 

propagate in the gravitational field, the deduced deviation is identical to that 

calculated from General Relativity. The method and their consequences are a 

good pedagogical example that verifies the Noorbala-Sepehrinia’s formula as 

well as the mechano-optics analogy (Hamilton’s principle/principle of 

stationary action and Fermat’s principle) for the bodies movement in the 

gravitational field. 
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1. Introduction 

 

In a paper (Noorbala and Sepehrinia, 2016), Noorbala and Sepehrinia 

(N-S) found a formula which relate the refractive index n  to the angle   of 

incidence (the angle between incident light ray and normal at the constant index 
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surface) for the case when the speed of the light varies continuously within a 

medium. This new relation is different to that one of Snell’ law. 

We will use it in our paper to compute the deviation of the wave 

(particularly, the light) when it travels an inhomogeneous medium (Sarbort and 

Tyc, 2012; Born and Wolf, 1970; Evans and Rosenquist, 1986). For this kind of 

medium we will assume that the refractive index depends only on the radius 

n(r). Our result is like that one obtained in General Relativity for an isotropic 

metrics (Lerner, 1997; de Felice, 1971; Simaciu and Ionescu-Pallas, 1996).  

All our derivations which we will perform in the following rows may be 

an opportunity to make a pedagogical practice to use the analogy between 

mechanics and optics, in order to prove the N-S relation and to study the motion 

of a body in a gravitational field (Evans and Rosenquist, 1986; Fasano and 

Marmi, 2006; Evans et al., 1996). 

 

2. N-S Relation for a Medium with Refractive Index n(r) 

 

Let’s emphasize an inhomogeneous medium with refractive index 

depending on the radius as  

 
1 3

( ) exp , 0, ,1, ,2,...,
2 2p

N
n r N p

r

 
   

 
. (1) 

The above dependency is suggested by Rastall-Yilmaz-Rosen metrics  

(Rastall, 1968a; Rastall, 1968b; Yilmaz, 1958; Rosen, 1974). We will use it 

since it allows us to obtain an approach for the bending of the waves when the 

refractive index is of the form 

 ( ) exp 1 , 0, 1
p p p

N N N
n r N

r r r

 
    

 
 . (2) 

For 1p  and
22gN r Gm c  (where m is the mass of a body placed in 

the origin of the reference frame), Eq. (2) becomes  

   1
gr

n r
r

  . (3) 

This gravitational index of refraction is compatible with the 

Schwarzschild metric (Møller, 1955, §Ch. 123). 

According to the equation (10) of the paper of Noorbala and Sepehrinia 

(Noorbala and Sepehrinia, 2016), for continuous and inhomogeneous medium 

the law of refraction is 

 
 sin ˆ

ˆsin cos
d n dn

n
ds ds


  

 
   

 
. (4) 

The surface of a medium where the refractive index is constant is a 

spherically one.  
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As shown in Fig. 1, ( , )r r 


 is the position vector in polar coordinates, 

n̂  is the normal to the surface, ̂  is the direction of the vector dr ds 
 

,   is 

the angle between the vectors n̂  and ̂  and   is the bending angle. 
 

 
 

Fig. 1 ‒ Position vector in polar coordinates. 

 

Since the refractive index depends only on the length of the position 

vector, according to Eq. (2), the normal to the surface n̂ , the position vector and 

the gradient of the index   n n r r r   


  ˆn r n    are in a parallel 

direction. It follows  

 
ˆdn d r d

ds ds r ds

 
  

 


, (5) 

 

where
 
is, according to Fig. 1, the angular variable in polar coordinates ( ,r  ) 

in the plane of the wave path 

The vector ˆdn ds is perpendicular to n̂ r r


and 

 
ˆ

v̂ cos sin
2

dn d d

ds ds ds

  
 

 
   

 
. (6) 

According to Fig. 1, to Fig. 2 and to the notations adopted in (Sarbort, 

2012) and (Noorbala and Sepehrinia, 2016) one can establish the following 

correspondences  

 2 2 2 ,dl ds dr r d      , (7) 
 

When substitute Eq. (6) in Eq. (4), it follows 
 

 
 sin

sin cos sin
d n d

n
ds ds

 
    , (8a) 
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or 

  sin cosd n n d    , (8b) 
 

which is the N-S relation mentioned in the rows above. 

 
3. N-S Relation and the Law of Conservation of Angular Momentum  

 

In what it follows we will derive the law of conservation of angular 

momentum and we will prove the compatibility of it with N-S relation for the 

case when the refractive index depends on the length of the position vector.  

The path of the light has the constant (Sarbort and Tyc, 2012; Born and 

Wolf, 1970; Evans and Rosenquist, 1986). According to the Eq. (1) of the paper 

(Sarbort and Tyc, 2012), this constant is 

  sin .L rn r   (9) 

This constant corresponds to the conservation of the length of the 

angular momentum of a photon L r p 
  

 (see Appendix 1). 

At 2   the radius becomes  2r R  . Using this radius and Eqs. 

(1) and (9), the constant becomes 

   exp
p

N
L Rn R R

R

 
   

 
. (10) 

One can differentiate (9), and so 

  sin sin
dr

d n n
r

   . (11) 

We will use the Fig. 1 of this paper and the Fig. 2 from (Sarbort, 2012) 

to establish the following relations 

 sin , cos
rd dr

ds ds


   . (12) 

When substituting relations (12) within the right side of (11) one can 

obtain the N-S relation (8b). It is not surprisingly that these two relations are 

compatible. 

The N-S relation was derived tacking account of the generalized 

Fermat’s principle (Noorbala and Sepehrinia, 2016) which is in fact the 

Hamilton’s principle for light (Born and Wolf, 1970; Evans and Rosenquist, 

1986). Using the Hamilton’s principle one derives the angular momentum 

conservation (Fasano and Marmi, 2006). 

 
4. The Bending of the Light Traveling in an Inhomogeneous Medium  

 

We will apply N-S relation for computing the deviation of ray of light 

which is parallel to Ox and start from a point of coordinates , 0r   an it 
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is directed toward the point of coordinates , 2r R     (see Fig. 1). Here R is 

the minimum length of the position vector related to the reference frame. Here 

the bending angle is zero, 0  , and 2  , since these two angles are related 

by  

        (13a) 
and 

 d d d      (13b) 
 

When express Eq. (7b) using r, n and
 
(Appendix 2, Eq. (A2.3)), then 

 .
r dn

d d
n dr

   (14) 

Differentiating Eq. (1), yields 

 
1p

dn pN
n

dr r 
  . (15) 

Replacing Eq. (15) in Eq. (14), one obtains  

 
p

pN
d d

r
   . (16) 

To integrate the Eq. (16) it is necessary to find out how   depends on 

r . According to (Sarbort and Tyc, 2012; Born and Wolf, 1970; Evans and 

Rosenquist, 1986), the path of the light in a medium is depicted by (Eq. (2) 

from (Sarbort and Tyc, 2012)) 

 
2 2 2

Ldr
d

r n r L
  


, (17) 

 

where L is the constant from Eqs. (9) and (10). 

Then we will do two replacements: first Eqs. (1) and (10) in Eq. (17) 
 

 
 

   2 2

exp

exp 2 exp 2

p

p p

R N R dr
d

r r N r R N R
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
 (18) 

 

and second Eq. (18) in Eq. (16) 
 

 
 

   1 2 2

exp

exp 2 exp 2

p

p p p

pNR N R dr
d

r r N r R N R






 . (19) 

 

Integrating Eq. (19) between r and r R we obtain the maximum 

deviation  m r     
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Here, the integral (20) 
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is an analytical formula using WolframAlpha or Wolfram Programing Lab 

(WolframAlpha). 

 
5. The Deviation of the Light in a Gravitational Field  

 

Assuming a gravitational field of a body with mass m, the refractive 

index can be expressed like (3), for the first-order isotropic Schwarzshild metric 

(Lerner, 1997; de Felice, 1971; Simaciu and Ionescu-Pallas, 1996). Therefore, 

the maximum deviation, with p = 1 and gN r in Eq. (21), is  

 
g

m

r

R
   . (22) 

The entire deviation, which occurs when the wave travels from r   
to r  , and passing at least distance R, is  

 
2

2
g

g m

r

R
   . (23) 

This result is just the relativistic deviation (Lerner, 1997; Møller, 1955). 

That is, an inhomogeneous optic medium with a refractive index of the form (3) 

behaves like a spherical lens and this lens mimics a gravitational field. 

One can rich the same result using lensmaker's Eq. (36) from the paper 

(Born and Wolf, 1970, §Ch. 4.4) for a spherical lens with radii of 

curvature 1 2R R R  and refractive index   1 p
pn R N R    

    1

1 2 2
1

p
p

N
n R

f R R 
      . (24) 

Then, the entire deviation for a parallel ray to the direction and which 

pass through a point of coordinates r R is  
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2

tanp p p
p

R N

f R
    . (25) 

For 1p  and gN r the entire deviation is  

 1

2 g

g

g

rR

f R
    . (26) 

and this is just the relativistic deviation from Eq. (23). 

 

6. Conclusions  

 

According to the general relativity, half of the bending of the light in a 

gravitational field depends on the curvature of the space and the other half to the 

variation of the velocity of the light along its path (Møller, 1955). 

An optical approach has to assume that the deviation of the waves, no 

matter of their kind (Simaciu et al., 2018), and for an inhomogeneous 

medium, n(r), depends on the optical properties of the medium, as we shown 

in this paper. 

Since in the classic physics the bending of the path it is assumed to the 

action of a force, then a gravitational force (i.e. which is directly proportional to 

the mass and inversely proportional to the distance) is also the effect of a 

refractive index which depends on the position vector. Therefore, if will be able 

to assume a scenario of becoming inhomogeneous the medium around a 

particle, then we will be able to get a phenomenological-causal approach of the 

gravitational interaction into the electromagnetic world, i.e. the world where the 

main interaction is the electromagnetic one. 

For a refractive index from Eq. (3), the acceleration is directly 

proportional to 
2

gr r , i.e. a gravitational type of acceleration.  

This kind of approach had succeed to apply the mechano-optics of the 

gravitational interaction to the research of the light and also to the particles with 

rest mass (Evans et al., 1996). 

Appendix 1 

According to the mechano-optics the angular momentum of a photon 

which moves in a gravitational field is 
 

 sin .mL r p rp   
  

 (A1.1) 

 

Its momentum is  

 .p m k   (A1.2) 

where k is the wave number, 
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Using the angular speed , we may express the mass of the photon 

as m c , the speed as c n   and the momentum as 
 

 .
n

p k
c c

 
  


   (A1.3) 

 

Replacing the Eqs. (A1.3) and (A1.2) in Eq. (A1.1), yields 
 

 sin .mL rn L
c c

 


   
    
   

  
 (A1.4) 

 

Since the angular momentum is a constant during its motion and 

also c (the angular speed doesn’t change during the travelling through the 

medium), then the following parameter  
 

  sin
mc L

L rn r 


 




 (A1.5) 

is a constant. 

Appendix 2 

Eq. (8b) can be put also in the form 
 

 sin cos cos .dn n d nd        (A2.1) 
 

Replacing d  from Eq. (13b) in Eq. (A1.1), one obtains 
 

 
sin

.
cos

dn
d

n





  (A2.2) 

 

Finally using Eq. (12) in Eq. (A1.2), it follows 
 

 .
r dn

d d
n dr

   (A2.3) 

 
NOTE. This paper has been uploaded on the arXiv platform: 1810.07029 

(physics.gen-ph). 

 

 
 REFERENCES 

 

Born M., Wolf E., Principles of Optics: Electromagnetic Theory of Propagation, 

Interference and Diffraction of Light, Fourth Edition, Pergamon Press, 

Elsevier, 1970. 



Bul. Inst. Polit. Iaşi, Vol. 66 (70), Nr. 2, 2020                                          25 

 

de Felice F., On the Gravitational Field Acting as an Optical Medium, Gen. Rel. Grav. 

2, Issue 4, 347-357 (1971). 

Evans J., Kamal K.N., Anwarul I., The Optical-Mechanical Analogy in General 

Relativity: New Methods for the Paths of Light and of the Planets, Am. J. Phys. 

64, Issue 11, 1404-1415 (1996). 

Evans  J., Rosenquist M., ”F=ma optics” , Am. J. Phys. 54, 876-883 (1986). 

Fasano A., Marmi S., Analytical Mechanics, Oxford University Press, 2006.  

Lerner L., A Simple Calculation of the Deflection of Light in a Schwarzschild 

Gravitational  Field, Am. J. Phys., 65  (12), 1194-1196 (1997). 

Møller Ch., The Theory of Relativity, Third Edition, New York: Oxford Univ. Press, 

1955. 

Noorbala M., Sepehrinia R., Is n sin θ Conserved Along the Light Path?, Eur. J. Phys. 

37, 025301 (2016).  

Rastall P., An Improved Theory of Gravitation. Part I, Can. Journ. Phys., 46, 19, 2155-

2179 (1968a). 

Rastall P., An Improved Theory of Gravitation: II, Proc. Phys. Soc., 1, A, 501-519 

(1968b). 

Rosen N., A Theory of Gravitation, Annals of Physics, 84, Issues 1–2, 455-473 (1974). 

Sarbort M., Tyc T., Spherical Media and Geodesic Lenses in Geometrical Optics, J. 

Opt. 14, 0757050 (2012). 

Simaciu I., Dumitrescu Gh., Borsos Z., Brădac M., Interactions in an Acoustic World: 

Dumb Hole, Adv. High Energy Phys., article ID 7265362 (2018). 

Simaciu I., Ionescu-Pallas N., A Covariant Approach to the Gravitational Refractive 

Index, Anales de Fisica, 92, No. 2, 66-70 (1996). 

WolframAlpha, https://lab.wolframcloud.com/app 

Yilmaz H., New Approach to General Relativity, Phys. Rev. 111, 5, 1417-1426 (1958). 

 

 

 

 

DEVIAȚIA UNDELOR ÎNTR-UN MEDIU NEOMOGEN  

 

(Rezumat) 

 

Folosind formula obținută de Noorbala și Sepehrinia, deducem deviația undelor 

într-un mediu neomogen cu variație continuă a vitezei de propagare. Pentru undele 

electromagnetice (lumina) care se propagă în câmpul gravitațional, abaterea dedusă este 

identică cu cea calculată în Relativitatea Generală. Metoda și consecințele acesteia sunt 

un bun exemplu care verifică formula Noorbala-Sepehrinia precum și analogia mecano-

optică (principiul lui Hamilton/principiul acțiunii staționare și principiul lui Fermat) 

pentru mișcarea corpurilor în câmpul gravitațional. 
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